Preview

University Management: Practice and Analysis

Advanced search

Higher education and researoh institutions: new quantitative methods

Abstract

The category I23 "Higher Education. Research Institutions" appeared in the Journal of Economic Literature as a field of JEL classification in December of 2004. The share of this field in the total amount of the EconLit records rose from 0.2% in 2004 to 1.8% in 2013. This fact marks the growing interest of researches to the problems of higher education and research institutions. The new directions of scientific research are able to occur on the intersections of subject fields. Thus the aim of our paper is to give a revue of new directions of economic research that have arisen on the intersections between the field I23 and the fields which are the subdivisions of the JEL general category C Mathematical and Quantitative Methods in 2006-2013 years. In order to achieve this aim we use bibliometric analysis, the EconLit records with the code I23, and the abstracts and texts of corresponding publications. We present 24 new directions of research, which include 105 publications, as well as brief comments for 29 works. The leaders with 17 works in the list of new directions are the intersections with the following two fields: 1) C51 Model Construction and Estimation, 2) C78 Bargaining Theory, Matching Theory. Thirty-seven codes of category C are free for intersection with I23 in order to develop new directions. The analysis shows the tendency to use not only separate techniques but also the complexes that include the combination of different models, software and means of data mining.

About the Authors

A. Grin'
Novosibirsk State Technical University
Russian Federation


M. Lychagin
Novosibirsk State University
Russian Federation


A. Lychagin
Novosibirsk State University
Russian Federation


E. Popov
Novosibirsk State University
Russian Federation


References

1. Лычагин М. В., Лычагин А. М., Попов И. Ю. Высшее образование, исследовательские институты и инновации в системе экономических знаний // Управление инновационной деятельностью экономических систем (ИН-ПРОМ-2014): труды междунар. науч-практ. конф. 2-7 июня 2014 г / под ред. А. В. Бабкина; С. - Петерб. гос. политех. ун-т, Таллиннский гос. тех. ун-т, ЦЭМИ РАН и др. СПб.: Изд-во Политех. ун-та, 2014. С. 456-461.

2. Лычагин М. В., Мкртчян Г. М., Суслов В. И. Концепция системно-инновационного библиометрического анализа и картографирования экономической литературы // Вестник Новосибирского государственного университета. Серия: Социально-экономические науки. 2014. Т. 14. Вып. 2. С. 127-141.

3. Пустовой Н. В., Межов И. С., Гринь А. М. Интеграция университетов и промышленных корпораций в стратегиях инновационного развития: монография. Новосибирск: Изд-во НГТУ, 2011. 274 с.

4. A Simultaneous Equation Model for Estimating Corruption in Higher Education / T. Andrei, D. Teodorescu, R. Bourbonnais, B. Oancea // Acta Oeconomica. 2009. No. 59 (4). P. 411-439.

5. Al-Yakoob S. M., Sherali H. D., Al-Jazzaf M. A Mixed-Integer Mathematical Modeling Approach to Exam Timetabling // Computational Management Science. 2010. No. 7 (1). P. 19-46.

6. Anderson M. L. The Benefits of College Athletic Success: An Application of the Propensity Score Design with Instrumental Variables [Electronic resource] // National Bureau of Economic Research, Inc. Working Papers: 18196. 2012. URL: http://www.nber.org/papers/w18196.pdf (accessed: 19.04.2015).

7. Bauwens L., Mion G., Thisse J.-F. The Resistible Decline of European Science. [Electronic resource] // C.E.P.R. Discussion Papers: 6625. 2008. URL: http://www.uclouvain.be/cps/ucl/doc/core/documents/coredp2007_92.pdf (accessed: 18.04.2015).

8. Better Luck Next Time: Learning Through Retaking / V. Frisancho, K. Krishna, S. Lychagin, C. Yavas [Electronic resource] // National Bureau of Economic Research, Inc. Working Papers: 19663. 2013. URL: http://www.nber.org/papers/w19663.pdf (accessed: 17.04.2015).

9. Bhattacharya D. Inferring Optimal Peer Assignment from Experimental Data // Journal of the American Statistical Association. 2009. No. 104 (486). P. 486-500.

10. Bibliometric Evaluation vs. Informed Peer Review: Evidence from Italy / G. Bertocchi, A. Gambardella, T. Jappelli, C. A. Nappi, F. Peracchi [Electronic resource] // C.E.P.R. Discussion Papers: 9724. 2013. URL: http://ftp.iza.org/dp7739.pdf (accessed: 23.04.2015)

11. BogetoftP.,FriedH. O., EeckautP. V. The University Benchmarker: An Interactive Computer Approach // Universities and Strategic Knowledge Creation: Specialization and Performance in Europe / ed. by A. Bonaccorsi, C. Daraio. Cheltenham, U.K. and Northampton, Mass.: Elgar, 2007. P. 443-462.

12. Does Relative Grading help Male Students? Evidence from a Field Experiment in the Classroom / E. Czibor, S. Onderstal, R. Sloof, M. van Praag [Electronic resource] // Tinbergen Institute. Discussion Papers: 14-116ЛП. 2014. URL: http://papers.tinbergen.nl/14116.pdf (accessed: 25.04.2015).

13. DominicisL. de, FloraxR. J. G.M., GrootH. L. F. de. Regional Clusters of Innovative Activity in Europe: Are Social Capital and Geographical Proximity the Key Determinants? [Electronic resource] // Tinbergen Institute, Discussion Papers: 11-009/3. 2011. URL: http://papers.tinbergen.nl/11009.pdf (accessed: 17.04.2015).

14. Giles D. E. Quantity versus Quality: What's in a (Journal) Name? [Electronic resource] // Department of Economics, University of Victoria, Econometrics Working Papers: 1103. 2011. URL: http://web.uvic.ca/econ/research/ papers/pdfs/ewp1103.pdf (accessed: 17.04.2015).

15. Grau N. The Impact of College Admissions Policies on The Performance of High School Students. Penn Institute for Economic Research. [Electronic resource] // Department of Economics, University of Pennsylvania. PIER Working Paper Archive. 2013. URL: http://economics.sas.upenn.edu/sites/economics.sas.upenn.edu/files/13-040_0.pdf (accessed: 18.04.2015).

16. GuoL., HuangS., SadekA. W. ANovel Agent-Based Transportation Model of a University Campus with Application to Quantifying the Environmental Cost of Parking Search // Transportation Research: Part A: Policy and Practice. 2013. No. 50 (0). P. 86-104.

17. HaleyM., JohnsonM. F.,McGeeM. K. A Framework for Reconsidering the Lake Wobegon Effect // Journal of Economic Education. 2010. No. 41 (2). P. 95-109.

18. Ivic K., Jurkovic Z., Marinkovic R. Izrada modela neuronskih mreza za ucestalost koristenja fakultetske knjiznice. (Development of Neural Network Models for the Frequency of Use of Faculty Library. With English summary) // Ekonomski Vjesnik. 2012. No. 25 (1). P. 104-115.

19. Kaklauskas A., Zavadskas E. K., Budzeviciene R. Web-Based Model of Multiple Criteria Ethical Decision-Making for Ethical Behaviour of Students // Journal of Business Economics and Management. 2009. No. 10 (1). P. 71-84.

20. Kelchtermans S., Verboven F. Reducing Product Diversity in Higher Education. [Electronic resource] // C.E.P.R. Discussion Papers: 6508. 2007. URL: http://www.cepr.org/pubs/dps/DP6508 (accessed: 18.04.2015).

21. Ketzler R., Zimmermann K. F. A Citation-Analysis of Economic Research Institutes [Electronic resource] // C.E.P.R. Discussion Papers: 9110. 2012. URL: http://ftp.iza.org/dp6780.pdf (accessed: 20.04.2015).

22. Lin T.-C. Application of a Static Game of Complete Information: Economic Behaviors of Professors and Students // Economics Bulletin. 2009. No. 29 (3). P. 1678-1686.

23. Menon M., Perali F. Eliciting Risk and Time Preferences in Field Experiments: Are They Related to Cognitive and Non-cognitive Outcomes? Are Circumstances Important? // Rivista Internazionale di Scienze Sociali. 2009. No. 117 (3-4). P. 593-629.

24. MontanariA., Viroli C. A Skew-Normal Factor Model for the Analysis of Student Satisfaction towards University Courses // Journal of Applied Statistics. 2010. No. 37 (3-4). P. 473-487.

25. Page S. E. On Incentives and Updating in Agent Based Models, California Institute of Technology [Electronic resource] // Division of the Humanities and Social Sciences, Working Papers: 1001. 1997. URL: http://s3-us-west-1.amazonaws.com/hss-prod-storage.cloud.caltech.edu/hss_working_papers/wp1001.pdf (accessed: 25.04.2015).

26. Predicting Participation in Higher Education: A Comparative Evaluation of the Performance of Geodemographic Classifications / C. Brunsdon, P. Longley, A. Singleton, D. Ashby // Journal of the Royal Statistical Society: Series A (Statistics in Society). 2011. No. 174 (1). P. 17-30.

27. Sgroi D., Oswald A. J. How Should Peer-Review Panels Behave? [Electronic resource] // University of Warwick, Department of Economics, The Warwick Economics Research Paper Series (TWERPS). 2012. URL: http://www2.warwick.ac.uk/fac/soc/economics/research/workingpapers/2012/twerp_999.pdf (accessed: 17.04.2015).

28. Soh K. Rectifying an Honest Error in World University Rankings: A Solution to the Problem of Indicator Weight Discrepancies. [Electronic resource] // Journal of Higher Education Policy and Management. 2013. No. 35 (6). P. 574-585.

29. Stepanic J., BachM. P., Kasac J. Agent Based Model of Young Researchers in Higher Education Institutions // Interdisciplinary Description of Complex Systems. 2013. No. 11 (2). P. 209-216.

30. SulisI., Capursi V. Building Up Adjusted Indicators of Students' Evaluation of University Courses Using Generalized Item Response Models // Journal of Applied Statistics. 2013. No. 40 (1-2). P. 88-102.

31. Sulis I., Porcu M. Comparing Degree Programs from Students' Assessments: A LCRA-Based Adjusted Composite Indicator // Statistical Methods and Applications. 2012. No. 21 (2). P. 193-209.

32. Windmann M., Kauermann G. Statistical Consulting at German Universities: Results of a Survey // AStA: Advances in Statistical Analysis. 2007. No. 91 (4). P. 367-378.


Review

For citations:


Grin' A., Lychagin M., Lychagin A., Popov E. Higher education and researoh institutions: new quantitative methods. University Management: Practice and Analysis. 2015;(2):35-46. (In Russ.)

Views: 405


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-6640 (Print)
ISSN 1999-6659 (Online)