Preview

University Management: Practice and Analysis

Advanced search

Assistant or Judge: the Role of Artificial Intelligence in Study Program Accreditation

https://doi.org/10.15826/umpa.2025.04.027

Abstract

   The article addresses issues related to the use of artificial intelligence for the evaluation of the quality of study programmes and educational institutions in terms of accreditation. Ongoing changes in the structure and content of higher education are due to the state educational policy; however, technological challenges that higher education is facing should not be disregarded, especially since higher education quite effectively applies technological innovations in the educational process (teaching, learning, management). Accreditation, as a procedure of evaluation, recognition, and quality assurance of education, on the one hand, should respond to changes in the educational process. On the other hand, it should use modern available digital technologies, including AI tools.

   This research aims to analyze and describe the testing of digital and AI tools in the pilot project TOP accreditation, as well as to discuss the prospects for developing such approaches in Russia, given the international trends.

   A hypothesis was developed that natural intelligence, an expert, cannot be replaced by artificial intelligence when evaluating the relevance and quality of information sources in use, as well as when making a final decision about education quality. The analysis of international practices showed that most initiatives on using AI in accreditation are at the stage of academic studies or early pilot projects. The findings can be used when developing a strategy and procedures for education quality evaluation, and making decisions on accreditation.

About the Authors

V. A. Bolotov
http://umj.ru
National Research University Higher School of Economics
Россия

Viktor A. Bolotov, Dr. hab (Pedagogy), Academician of the Russian Academy of Sciences, Scientific Director of the Center

Center for Monitoring the Quality of Education

101000; 20 Myasnitskaya str.; Moscow



G. N. Motova
http://umj.ru
National Centre for Public Accreditation
Россия

Galina N. Motova, Dr. hab (Pedagogy), Director

424006; 206 А Volkova str.; Yoshkar-Ola



References

1. Ivakhnenko E. N., Nikol’skii V. S. ChatGPT v vysshem obrazovanii i nauke: ugroza ili tsennyi resurs? [ChatGPT in higher education and science: a threat or a valuable resource?] Vysshee obrazovanie v Rossii, 2023, vol. 32, nr 4, pp. 9–22. DOI: 10.31992/0869-3617-2023-32-4-9-22 (In Russ.).

2. Akinwalere S., Ivanov V. Artificial Intelligence in Higher Education: Challenges and Opportunities. Border Crossing, 2022, nr 12, pp. 1–15. DOI: 10.33182/bc.v12i1.2015 (In Eng.).

3. Tikhonova N. V., Pomortseva N. P. Vypusknaya kvalifikatsionnaya rabota v vuze v usloviyakh rasprostraneniya iskusstvennogo intellekta: vzglyad studentov [Final qualification paper in university in the context of artificial intelligence proliferation: university students’ perspective]. Vysshee obrazovanie v Rossii, 2025, vol. 34, nr 6, pp. 112–135. DOI: 10.31992/0869-3617-2025-34-6-112-135 (In Russ.).

4. Bychkov V. A., Patoka S. S. Adaptivnoe obuchenie v tsifrovuyu epokhu: integratsiya iskusstvennogo intellekta i pedagogicheskikh metodik [Adaptive learning in the digital age: Integration of artificial intelligence and pedagogical techniques]. Upravlenie obrazovaniem: teoriya i praktika, 2023, nr 11–1 (70), pp. 92–100. DOI: 10.25726/t7839-3784-0123-p (In Russ.).

5. Sysoev P. V. Kompetentsiya sovremennogo pedagoga v oblasti iskusstvennogo intellekta: struktura i soderzhanie [A modern teacher’s competence in the field of artificial intelligence: structure and content]. Vysshee obrazovanie v Rossii, 2025, vol. 34, nr 6, pp. 58–79. DOI: 10.31992/0869-3617-2025-34-6-58-79 (In Russ.).

6. Vegera Zh. G. Primenenie generativnogo iskusstvennogo intellekta (II) dlya analiza obrazovatel’nykh dannykh i prognozirovaniya akademicheskoi uspevaemosti studentov [The use of generative artificial intelligence (AI) to analyze educational data and predict student academic performance]. Upravlenie obrazovaniem: teoriya i praktika, 2024, nr 8–1, pp. 116–125. DOI: 10.25726/j2473-1350-7803-t (In Russ.).

7. Oreshkina T. A., Dolganov A. Yu., Mayatskaya E. A., Artyugin O. Yu. Vnedrenie tekhnologii iskusstvennogo intellekta v obrazovatel’nyi protsess: upravlencheskie vyzovy [Implementation of artificial intelligence technologies in education: managerial challenges]. Universitetskoe upravlenie: praktika i analiz, 2025, vol. 29, nr 1, pp. 92–105. DOI: 10.15826/umpa.2025.01.007. (In Russ.).

8. Koshkina E. A., Bordovskaya N. V., Gnedykh D. S., Khromova M. A., Dem’yanchuk R. V., Iskhakova M. P., Balyshev P. A. Generativnyi iskusstvennyi intellekt v vysshem obrazovanii : obzor teoreticheskikh podkhodov i praktik primeneniya [Generative artificial intelligence in higher education : A review of theoretical approaches and application practices]. Vysshee obrazovanie v Rossii, 2025, vol. 34, nr 6, pp. 36–57. DOI: 10.31992/0869-3617-2025-34-6-36-57 (In Russ.).

9. Korol’ A. D., Bushmanova E. A. Iskusstvennyi intellekt v zerkale obrazovaniya: problema dialoga [Generative artificial intelligence in higher education : A review of theoretical approaches and application practices]. Vysshee obrazovanie v Rossii, 2025, vol. 34, nr 6, pp. 36–57. DOI: 10.31992/0869-3617-2025-34-6-36-57 (In Russ.).

10. Rezaev A. V., Tregubova N. D. Vnedrenie instrumentov iskusstvennogo intellekta v sferu vysshego obrazovaniya: vzglyad s pozitsii sotsial’no-institutsional’noi paradigmy obshcheniya [AI tools in higher education through the lens of the social-institutional paradigm of social intercourse]. Vysshee obrazovanie v Rossii, 2025, vol. 34, nr 6, pp. 80–90. DOI: 10.31992/0869-3617-2025-34-6-80-90 (In Russ.).

11. Chasovskikh V. P., Attokurov U. T., Kokh E. V. Primenenie innovatsionnykh obrazovatel’nykh tekhnologii v usloviyakh tsifrovizatsii [Application of innovative educational technologies in the context of digitalization]. Upravlenie obrazovaniem: teoriya i praktika, 2024, vol. 7–1, pp. 158–166. DOI: 10.25726/q5947-6561-3430-t (In Russ.).

12. Kuz’minov Ya. I, Kruchinskaya E. V., Gruzdev I. A., Naumov A. A. Otstayushchie i operezhayushchie: kak studenty ispol’zuyut generativnyi iskusstvennyi intellekt v obrazovatel’nykh tselyakh [Falling behind and getting ahead: how student use generative AI in education]. Vysshee obrazovanie v Rossii, 2025, vol. 34, nr 6, pp. 9–35. DOI: 10.31992/0869-3617-2025-34-6-9-35 (In Russ.).

13. Sysoev P. V. Etika i II-plagiat v akademicheskoi srede: ponimanie studentami voprosov soblyudeniya avtorskoi etiki i problemy plagiata v protsesse vzaimodeistviya s generativnym iskusstvennym intellektom [Ethics and AI-plagiarism in the academic environment: students’ understanding of compliance with author’s ethics and the problem of plagiarism in the process of interaction with generative AI]. Vysshee obrazovanie v Rossii, 2024, vol. 33, nr 2, pp. 31–53. DOI: 10.31992/0869-3617-2024-33-2-31-53 (In Russ.).

14. McDonald N., Johri A., Ali A., Hingle Collier A. Generative artificial intelligence in higher education: Evidence from an analysis of institutional policies and guidelines. Computers in Human Behavior: Artificial Humans, 2025, vol. 3, nr 100121. DOI: 10.1016/j.chbah.2025.100121 (In Eng.).

15. Motova G. N. Akkreditatsiya v Kitae – uroki dlya Rossii [China’s experience in accreditation as a lesson for Russia]. Universitetskoe upravlenie: praktika i analiz, 2024, vol. 28, nr 4, pp. 54–66. DOI: 10.15826/umpa.2024.04.0314 (In Russ.).

16. Navodnov V. G., Motova G. N., Ryzhakova O. E. Metodika «MetALig» i ee primenenie dlya sravnitel’nogo analiza mezhdunarodnykh rei tingov i rezul’tatov rossiiskogo Monitoringa effektivnosti deyatel’nosti vuzov [Methodology “MetALig” and its application for a comparative analysis of international rankings and the results of the Russian Monitoring of the effectiveness of universities]. Voprosy obrazovaniya, 2019, nr 3, pp. 130–151. DOI: 10.17323/1814-9545-2019-3-130-151 (In Russ.).

17. Bolotov V. A., Motova G. N., Navodnov V. G. Global’nyi agregirovannyi reiting vuzov: rossiiskii sled [Global aggregate ranking of universities: Russian track]. Vysshee obrazovanie v Rossii, 2021, nr 3, pp. 9–25. DOI: 10.31992/0869-3617-2021-30-3-9-25 (In Russ.).

18. Bolotov V. A., Motova G. N., Navodnov V. G., Ryzhakova O. E. Kak skonstruirovat’ natsional’nyi agregirovannyi reiting? [How to construct a national aggregate rating?]. Vysshee obrazovanie v Rossii, 2020, vol. 29, nr 1, pp. 9–24. DOI: 10.31992/0869-3617-2020-29-1-9-24 (In Russ.).

19. Pol M., Valeikiene A., Hazelkorn E., Stan A. ENQA agency review: Quality assurance agency for Higher Education, available at: https://www.enqa.eu/wp-content/uploads/2018/07/External-review-report-QAA-FINAL.pdf (accessed 02. 09. 2025) (In Eng.).

20. Balatskii E. V. Rossiiskaya praktika otsenki effektivnosti universitetskikh programm [Russian practice of evaluating the effectiveness of university programs]. Obshchestvo i ekonomika, 2012, nr 11, pp. 68–84. (In Russ.).

21. Artificial Intelligence in Accreditation. Guideline. Southern Association of Colleges and Schools Commission on Colleges SACSCOC, available at: https://sacscoc.org/app/uploads/2024/12/AI-in-Accreditation.pdf (accessed 02. 09. 2025). (In Eng.).

22. Artificial Intelligence in Accreditation Policy: Principles and Restrictions Purpose. Senior College and University Commission (WASC), November 2024, available at: https://wascsenior.app.box.com/s/jhmujmv4qp1e41zixenzmixyhdjkj1i0 (accessed 02. 09. 2025) (In Eng.).

23. Singleton J. D. Artificial Intelligence in Higher Education Accreditation: Advancing Quality, Accessibility, and Special Education Inclusion, available at: https://arch.astate.edu/ebs-tedu-facpub/10 (accessed 02. 09. 2025) (In Eng.).

24. Melikyan A. V. Statisticheskii analiz dinamiki pokazatelei deyatel’nosti rossiiskikh vuzov [Statistical analysis of the dynamics of performance indicators of Russian universities]. Voprosy statistiki, 2021, vol. 28, nr 1, pp. 38–49. DOI: 10.34023/23136383-2021-28-1-38-49 (In Russ.).

25. Rezaev A. V., Stepanov A. M., Tregubova N. D. Vysshee obrazovanie v epokhu iskusstvennogo intellekta [Higher education in the age of AI]. Vysshee obrazovanie v Rossii, 2024, vol. 33, nr 4, pp. 49–62. DOI: 10.31992/0869-3617-2024-33-4-49-62 (In Russ.).

26. Stufflebeam D. L. Factors that influenced my conduct of evaluations and evaluation training programs. New Directions for Evaluation, 2016, vol. 150, pp. 41–49. DOI: 10.1002/ev.20188 (In Eng.).

27. Motova G. N. Akkreditatsiya obrazovatel’nykh sistem [Accreditation of educational systems]. Yoshkar-Ola, Tsentr gosudarstvennoi akkreditatsii, 2004, 260 p. (In Russ.).


Review

For citations:


Bolotov V.A., Motova G.N. Assistant or Judge: the Role of Artificial Intelligence in Study Program Accreditation. University Management: Practice and Analysis. 2025;29(4):5-16. (In Russ.) https://doi.org/10.15826/umpa.2025.04.027

Views: 97

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-6640 (Print)
ISSN 1999-6659 (Online)