Preview

University Management: Practice and Analysis

Advanced search

Implementation of Artificial Intelligence Technologies in Education: Managerial Challenges

https://doi.org/10.15826/umpa.2025.01.007

Abstract

This study examines fundamental interdisciplinary issues and key managerial challenges associated with decision-making processes regarding the legalization and implementation of artificial intelligence (AI) technologies in educational settings. The research aims to assess potential effects, advantages, and risks of integrating large language model (LLM)-based AI technologies into educational processes at the discipline level. The authors propose an original theoretical framework utilizing Manuel DeLanda’s assemblage theory. This approach enables the incorporation of all actors into communication models regardless of their material substrates—a crucial consideration in contexts where communication becomes heterarchical and extends beyond human participants. Building on this theoretical foundation, novel methodological approaches have been developed to systematize professional teaching tasks in hybrid (phygital) environments incorporating AI technologies. The study includes analysis of AI functionality alignment with pedagogical requirements, development of AI effectiveness evaluation methodologies, demonstration of task transformation through a case study of course structure design, classification of enhanced LLM utilization approaches (industrial engineering, RAG, LoRA, multi-agent systems). The paper analyzes digital transformation processes in higher education driven by AI adoption, with particular emphasis on managerial considerations at various organizational levels. This research will benefit higher education administrators, researchers, and educators engaged in educational digitalization and institutional transformation.

About the Authors

T. А. Oreshkina
Ural Federal University
Russian Federation

Tatiana A. Oreshkina – PhD (Sociology), Associate Professor, Department of sociology and technologies of public administration, Institute of public administration and entrepreneurship



A. Yu. Dolganov
Ural Federal University
Russian Federation

Anton Yu. Dolganov – Associate Professor of the Department of Radio Electronics and Telecommunications, Institute of Radio Electronics and Information Technology



E. A. Mayatskaya
Ural Federal University
Russian Federation

Ekaterina A. Mayatskaya – Engineer of the Department of Radio Electronics and Telecommunications of the Institute of Radio Electronics and Information Technology



O. Yu. Artyugin
SberAI
Russian Federation

Oleg Yu. Artyugin – Executive Director



References

1. Brown N. B. Enhancing Trust in LLMs: Algorithms for Comparing and Interpreting LLMs. arXiv preprint, 2024, 15 p. (In Eng.).

2. Pappachan P. et al. Transparency and Accountability. In: Challenges in Large Language Model Development and AI Ethics, IGI Global, 2024, pp. 178–211. (In Eng.).

3. Garkusha N. S., Gorodova Yu. S. Pedagogicheskie vozmozhnosti ChatGPT dlya razvitiya kognitivnoi aktivnosti studentov [Pedagogical capabilities of ChatGPT for the development of cognitive activity of students]. Professional’noe obrazovanie i rynok truda, 2023. vol. 11, nr 1, pp. 6–23. doi 10.52944/ PORT.2023.52.1.001 (In Russ.).

4. Rezaev A. V., Tregubova N. D. Filosofiya obshcheniya i iskusstvennyi intellekt: opyt sravnitel’nogo analiza diskussii v otechestvennoi i zarubezhnoi literature [Philosophy of communication and artificial intelligence: experience of comparative analysis of discussions in domestic and foreign literature]. Epistemologiya i filosofiya nauki, 2024. vol. 61, nr 2, pp. 134–156. (In Russ.).

5. Leshkevich T. G. Iskusstvennyi intellekt v kontekste filosofskogo osmysleniya [Artificial intelligence in the context of socio-humanitarian philosophical understanding]. Voprosy filosofii, 2024, nr 5, pp. 50–60. (In Russ.).

6. Eden C. A. et al. Integrating AI in education: Opportunities, challenges, and ethical considerations. Magna Scientia Advanced Research and Reviews, 2024, vol. 10, nr 2, pp. 6–13. (In Eng.).

7. Chen H. The ethical challenges of educational artificial intelligence and coping measures: A discussion in the context of the 2024 World Digital Education Conference. Science Insights Education Frontiers, 2024, vol. 20, nr 2, pp. 3263– 3281. (In Eng.).

8. Chernykh N. A. Obzor, kontseptsii, tochki zreniya k vozmozhnosti pravovogo regulirovaniya tekhnologii iskusstvennogo intellekta [Review, concepts, points of view on the possibility of legal regulation of artificial intelligence technology]. Byulleten’ nauki i praktiki, 2024, vol. 10, nr 5, pp. 519–525. doi 10.33619/2414-2948/102/67 (In Russ.).

9. Luman N. Sotsial’nye sistemy. Ocherk obshchei teorii [Social systems. An essay on general theory]. St. Petersburg, Nauka, 2007, 648 p. (In Russ.).

10. Kastel’s M. Informatsionnaya epokha: ekonomika, obshchestvo i kul’tura [Information Age: Economy, Society and Culture]. Moscow, GU VShE, 2000, 608 p. (In Russ.).

11. Latur B. Peresborka sotsial’nogo: vvedenie v aktornosetevuyu teoriyu [Reassembling the social: An introduction to actor-network-theory]. Moscow, Izd. dom Vysshei shkoly ekonomiki, 2014, 384 p. (In Russ.).

12. Kallon M. Aktorno-setevaya teoriya [Actor network theory]. Moscow, Izd. dom Vysshei shkoly ekonomiki, 2014, 10 p. (In Russ.).

13. Knorr Cetina, K. The Scientist as an Analogical Reasoner: A Critique of the Metaphor Theory of Innovation. In: Social Process of Scientific Investigation, Dordrecht, Reidel, 1981, pp. 49–67. (In Eng.).

14. Khabermas Yu. Moral’noe soznanie i kommunikativnoe deistvie [Moral consciousness and communicative action]. St Petersburg, Nauka, 2001, 380 p. (In Russ.).

15. Delanda M. Novaya filosofiya obshchestva: Teoriya assamblyazhei i sotsial’naya slozhnost’ [New Philosophy of Society: Assemblage Theory and Social Complexity]. Perm’, Gile Press, 2018, 170 p. (In Russ.).

16. Glukhovskii A. S., Durnev A. D., Chirva D. V. Raspredelennaya moral’naya otvetstvennost’ v sfere iskusstvennogo intellekta [Shared moral responsibility in the sphere of artificial intelligence]. Eticheskaya mysl’, 2024, vol. 24, nr 1, pp. 129–143. (In Russ.).

17. Vaswani A. Attention is all you need. Advances in Neural Information Processing Systems, 2017, vol. 30, 11 p. (In Eng.).

18. Dubey A. et al. The llama 3 herd of models. arXiv preprint, 2024, 92 p. (In Eng.).

19. Team G. et al. Gemini: a family of highly capable multimodal models. arXiv preprint, 2023, 90 p. (In Eng.).

20. Brown T. B. Language models are few-shot learners. arXiv preprint, 2020, 75 p. (In Eng.).

21. Wei J. et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 2022, vol. 35, pp. 24824–24837. (In Eng.).

22. Zhang Yu. et al. Siren’s song in the AI ocean: a survey on hallucination in large language models. arXiv preprint, 2023, 32 p. (In Eng.).

23. Lewis P. et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 2020, vol. 33, pp. 9459–9474. (In Eng.).

24. Hu E. J. et al. Lora: Low-rank adaptation of large language models. arXiv preprint, 2021, 24 p. (In Eng.).

25. Wu Q. et al. Autogen: Enabling next-gen LLM applications via multi-agent conversation framework. arXiv preprint, 2023, 28 p. (In Eng.).

26. Wang K. et al. Adapting LLM agents with universal feedback in communication.ICML 2024 Workshop on Foundation Models in the Wild, 2024, 18 p. (In Eng.).

27. Wang A. Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint, 2018, 20 p. (In Eng.).

28. Shavrina T. et al. RussianSuperGLUE: A Russian language understanding evaluation benchmark. arXiv preprint, 2020, 10 p. (In Eng.).

29. Hashemi H. et al. LLM-Rubric: A Multidimensional, Calibrated Approach to Automated Evaluation of Natural Language Texts. arXiv preprint, 2024, 29 p. (In Eng.).

30. Jung J., Brahman F., Choi Ye. Trust or Escalate: LLM Judges with Provable Guarantees for Human Agreement. arXiv preprint, 2024, 25 p. (In Eng.).


Review

For citations:


Oreshkina T.А., Dolganov A.Yu., Mayatskaya E.A., Artyugin O.Yu. Implementation of Artificial Intelligence Technologies in Education: Managerial Challenges. University Management: Practice and Analysis. 2025;29(1):92–105. (In Russ.) https://doi.org/10.15826/umpa.2025.01.007

Views: 98


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-6640 (Print)
ISSN 1999-6659 (Online)