Institutions of Higher Education in the Russian Federation: Budgetary and Private Impact of Education at the University Level
https://doi.org/10.15826/umpa.2021.04.022
Abstract
This article considers at the university level the graduates’ income information, as well as budgetary and private cost estimates to determine budgetary and private impact of education using the calculation of internal rate of return. Since the graduates’ income information is available for only three-year period after the graduation, the synthetic profile of the graduates’ income during their lives is constructed according to the regional microdata. Results of the calculation show that the average impact of higher education is about 9 %, which is consistent with other estimates. In addition to list of universities indicating their impact, the article presents conclusions and recommendations, based on the analysis of the impact’s types and the correlation with other parameters, particularly with Unified State Examination scores for entry into higher education. The article’s value consists in demonstration of the possible approach for estimates, considering impact of investment in higher education at the university, faculty or department level. Researchers of the future can build on methodology and estimates, presented in this article, to obtain more accurate and reliable data on private impact of investment in higher education.
About the Authors
S. ParandekarRussian Federation
Suhas D. Parandekar – PhD (Economics), Senior Economist
36/1, Bolshaya Molchanovka st., Moscow, 121069
A. Volgin
Russian Federation
Artem D. Volgin – Consultant
36/1, Bolshaya Molchanovka st., Moscow, 121069
References
1. Data for Better Lives. World Development Report 2021, The World Bank. URL: https://wdr2021.worldbank.org/thereport/ (accessed: 01.09.2021). (In Eng.).
2. Polachek S. W., Siebert W. S. The economics of Earnings. London : Cambridge University Press, 1993. 367 p. (In Eng.).
3. Mair P., Hatzinger R. Extended rasch modeling: the eRm package for the application of IRT models in R // Journal of Statistical Software 20. 2007, nr. 9, pp. 1–20. (In Eng.).
4. Hanushek E. et al. Returns to skills around the world: evidence from PIAAC // European Economic Review. 2015. Vol. 73, pp. 103–130. (In Eng.).
5. Demin D., Kahn L. B. Skill requirements across firms and labor markets: evidence from job postings for professional // Journal of Labor Economics. 2018. Vol. 36 (S1), pp. 337–369. (In Eng.).
6. Васильев К. и др. Развитие навыков для инновационного роста в России. [Development of skills for innovative growth in Russia]. URL: https://imagebank2.worldbank.org/search/18004295 (дата обращения: 01.08.2021). (In Russ.).
7. Рожкова К. В. Отдача от некогнитивных характеристик на российском рынке труда [Impact of non-cognitive characteristics on Russian labor market]. Вопросы экономики [Economic issues]. 2019. № 11. С. 81–207. (In Russ.).
8. Гимпельсон В. Е., Зудина А. А., Капелюшников Р. И. Некогнитивные компоненты человеческого капитала: что говорят российские данные [Non-cognitive components of human capital: what does Russian data say]. Вопросы экономики [Economic issues]. 2020. № 11. С. 5–31. (In Russ.).
9. Mince J. Schooling Experience and Earnings (Human behavior and social institutions). New York : National Bureau of Economic Research, 1974. 152 p. (In Eng.).
10. Psacharopoulos G., Teixeira P. Rates of Return to Education: Conceptual and Methodological Issues. Encyclopedia of International Higher Education Systems and Instit utions, 2019, pp. 1–8. DOI: 10.1007/978-94-017-9553-1_109–1 (In Eng.).
11. Psacharopoulos G. The Profotability of Investment in Education: Concepts and Methods. Washington : World Bank, 1995. 32 p. (In Eng.).
12. Haveman R. H., Wolfe B. L. Social and nonmarket benefits from education in an advanced economy. Federal Reserve Bank of Boston. 2002. Vol. 47 (Jun), pp. 97–142. (In Eng.).
13. McMahon W. The social and external benefits of education. Illinois : Edward Elgar Publishing, 2004. 34 p. (In Eng.).
14. Owens J. A review of the social and non-market returns to education. URL: https://gov.wales/sites/default/files/statistics-and-research/2019- (accessed: 20.07.2020). (In Eng.).
15. Psacharopoulos G., Patrinos H. A. Returns to Investment in Education: A Decennial Review of the Global Literature. URL: https://openknowledge.worldbank.org/handle/10986/29672 (accessed: 20.07.2020). (In Eng.).
16. Day J. C., Newburger E. C. The Big Payoff: Educational Attainment and Synthetic Estimates of Work-Life Earnings. Current Population Reports. Special Studies. 2002. Pp. 23–210. (In Eng.).
17. Julian T. A., Kominski R. A. Education and Synthetic WorkLife Earnings Estimates. American Community Survey Reports, ACS-14. Washington : U. S. Census Bureau, 2011. 14 p. (In Eng.).
18. Kong Y.-C., Ravikumar B. Earnings growth over a lifetime: not what it used to be. URL: https://www.stlouisfed.org/publications/regional-economist/april-2012/earnings-growth-over-alifetime–not-what-it-used-to-be (accessed: 20.07.2020). (In Eng.).
19. Гимпельсон В. Е. Возраст и заработная плата: стилизованные факты и российские особенности [Age and wages: stylized facts and Russian specificities]. Экономический журнал ВШЭ [Economic journal of HSE University]. 2019. Т. 23. № 2. C. 185–237. (In Russ.).
20. Аистов А. В. Доходы респондентов разных поколений [Income of intergenerational respondents]. Прикладная эконометрика [Applied Econometrics]. 2018. Т. 50. С. 23–42. (In Russ.).
21. Tamborini C. R, ChangHwan K., Sakamoto A. Education and lifetime earnings in the United States. Demography. 2015. Vol. 52 (4), pp. 1383–1407. DOI:10.1007/s13524-015-0407-0 (In Eng.).
22. Patrinos H. et al. Returns to Education in the Russian Federation. URL: https://ftp.iza.org/dp13726.pdf (accessed: 10.10.2021). (In Eng.).
Review
For citations:
Parandekar S., Volgin A. Institutions of Higher Education in the Russian Federation: Budgetary and Private Impact of Education at the University Level. University Management: Practice and Analysis. 2021;25(4):6-24. (In Russ.) https://doi.org/10.15826/umpa.2021.04.022