Learning Analytics in Conventional Education: its Role and Outcomes
https://doi.org/10.15826/umpa.2020.03.026
Abstract
Massification, digitalization and bureaucratization are now the major trends that shape higher education. Massification has led to an inevitable problem of the heterogeneity of students and the need for adaptive learning; digitalization has created a need for distance learning technologies and, as a result, learning data production; finally, bureaucratization has meant that the education quality assessment now predominantly relies on quantitative rather than qualitative indicators. At the crossing of these trends, a new research interest has emerged, which develops both theoretical and practically oriented studies and which has become known as learning analytics. Learning analytics is now actively discussed in Western countries, where national policies to regulate and stimulate this sphere are designed and professional associations of specialists in learning analytics are created. Proponents of learning analytics believe that the data collected and analyzed by an education institution will help the management take more justified and objective decisions than those based on expert opinions. Learning analytics is understood in this paper as a necessary tool for detecting the weak sides of the curricula. It also helps build students’ individual learning trajectories, which is essential for an individualized approach in education and for making the learning process more adaptive. Opponents of learning analytics, in their turn, see it as a threat to the current balance of power in education, the roles of the teacher and manager, and point out the need for specific competencies and the danger of personal data breach. Russia is now left out of the global agenda: except for a few recent cases, learning analytics is still viewed by many as more of a promise than reality. This review is aimed at shedding light on the modern understanding of learning analytics, its development in the world and in Russia, the prospects and limitations of its application in Russia from the perspective of the key stakeholders in higher education. We also propose recommendations regarding the organization of a university learning analytics system. This article will be of interest to university managers and decision-makers, teachers and scholars of higher education as it provides information on the organization of a data management system, including the collection, analysis and use of data.
Keywords
About the Authors
K. A. VilkovaRussian Federation
Ksenia A. Vilkova - Junior Research Fellow and Postgraduate Student.
Potapovsky 16, Bld.10, Moscow 101000
U. S. Zakharova
Russian Federation
Ulyana S. Zakharova - PhD in Theory of Language, Research Fellow.
Potapovsky 16, Bld.10, Moscow 101000
References
1. Law N. W. Y. et al. A Global Framework of Reference on Digital Literacy Skills for Indicator 4.4. 2 (2018). Available at: http://uis.unesco.org/sites/default/files/documents/ip51-global-framework-reference-digital-literacy-skills-2018-en.pdf (accessed 23.06.2020). (In Eng.).
2. Buckingham Shum S. J., Luckin R. Learning Analytics and AI: Politics, Pedagogy and Practices. British Journal of Educational Technology, 2019, vol. 50, no 6, pp. 2785-2793. DOI: /10.1111/bjet.12880. (In Eng.).
3. Siemens G., Long P. Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE Review, 2011, vol. 46, no 5, pp. 30-38. (In Eng.).
4. O’Farrell L. Using Learning Analytics to Support the Enhancement of Teaching and Learning in Higher Education, National Forum for the Enhancement of Teaching and Learning in Higher Education (2017). Available at: https://www.teachingandlearning.ie/publication/using-learning-ana-lytics-to-support-the-enhancement-of-teaching-and-learning-in-higher-education/ (accessed 11.06.2020). (In Eng.).
5. McGraw-Hill Education. Are Learning Analytics the New ‘Likes’? 87 % of College Students Perform Better with Access to Personalized Data, New Research Finds, McGraw-Hill Education (2015). Available at: https://www.mheduca-tion.com/news-media/press-releases/learning-analytics-new-likes-college-better-access-personalized-data-new-research. html (accessed 11.06.2020). (In Eng.).
6. Zagirova F. R. Akademicheskaja neodnorodnost’ stu-dentov i upravlenie vuzami: formirovanie issledovatel’skoj povestki [Academic Diversity and University Governance: The Formation of a Research Agenda]. University Management: Practice and Analysis, 2018, vol. 22, no 3, pp. 141-154. DOI: 10.15826/umpa.2018.03.033. (In Russ.).
7. Henrie C. R. et al. Exploring the Potential of LMS Log Data as a Proxy Measure of Student Engagement. Journal of Computing in Higher Education, 2018, vol. 30, no 2, pp. 344-362. DOI: 10.1007/s12528-017-9161-1. (In Eng.).
8. Tempelaar D. T., Rienties B., Giesbers B. In Search for the Most Informative Data for Feedback Generation: Learning Analytics in a Data-Rich Context. Computers in Human Behavior, 2015, vol. 47, pp. 157-167. DOI: 10.1016/j.chb.2014.05.038. (In Eng.).
9. Gorlushkina N. N., Kocjuba I. Ju., Hlopotov M. V. Zadachi i metody intellektual’nogo analiza obrazovatel’nyh dannyh dlja podderzhki prinjatija reshenij [Tasks and Methods of Educational Data Mining for Decision Support]. Educational Technologies and Society, 2015, vol. 18, no 1, pp. 472-482. (In Russ.).
10. Patarakin E. D. Ispol’zovanie uchebnoj komp’juternoj analitiki dlja podderzhki sovmestnoj setevoj dejatel’nosti sub’ektov obrazovanija, Obrazovatel’nye tehnologii i ob-shhestvo [Using Educational Computer Analytics to Support Joint Network Activities of Educational Subjects]. Educational Technologies and Society, 2014, vol. 17, no 2, pp. 538-554. (In Russ.).
11. Sclater N., Peasgood A., Mullan J. Learning Analytics in Higher Education. London, Jisc, 2016. 176 p. (In Eng.).
12. Sclater N. Rolling Out Learning Analytics at a National Level. EDUCAUSE Review Online, 2019. Available at: https://er.educause.edu/articles/2019/6/rolling-out-learning-analytics-at-a-national-level (accessed 11.06.2020). (In Eng.).
13. Wong B. T. M. Learning Analytics in Higher Education: An Analysis of Case Studies. Asian Association of Open Universities Journal, 2017, vol. 12, no 1, pp. 21-40. DOI: 10.1108/aaouj-01-2017-0009. (In Eng.).
14. Tang S. F., Hussin S. Quality in Higher Education: A Variety of Stakeholder Perspectives. International Journal of Social Science and Humanity, 2011, vol. 1, no 2, p. 126. DOI: 10.7763/ijssh.2011.v1.21. (In Eng.).
15. Harvey L., Green D. Defining Quality. Assessment & Evaluation in Higher Education, 1993, vol. 18, no 1, pp. 9-34. DOI: 10.1080/0260293930180102. (In Eng.).
16. Kondratenko B. A., Kondratenko A. B. Analiz dan-nyh-Budushhee obrazovanija [Data Analysis is the Future of Education]. In: Humanitarian Technologies in the Modern World, Proceedings of the Sixth International Conference, Kaliningrad, 2018, pp. 124-129. (In Russ.).
17. Siemens G., Dawson S., Lynch G. Improving the Quality and Productivity of the Higher Education Sector. Policy and Strategy for Systems-Level Deployment of Learning Analytics. Canberra, Society for Learning Analytics Research for the Australian Office for Learning and Teaching, 2013. 31 p. (In Eng.).
18. Nottingham Trent University. NTU Student Dashboard: Introduction to the Dashboard (2017). Available at: https://www4.ntu.ac.uk/adq/document_uploads/running_a_course/164304.pdf (accessed 11.06.2020). (In Eng.).
19. Lim C. P., Tinio V. L. Learning Analytics for the Global South, Quezon City, Philippines: Foundation for Information Technology Education and Development (2018). Available at: https://digital.fundacionceibal.edu.uy/jspui/bit-stream/123456789/243/3/Learning-Analytics-Full-Paper-2. pdf (accessed 11.06.2020). (In Eng.).
20. Arnold K. E., Pistilli M. D. Course Signals at Purdue: Using Learning Analytics to Increase Student Success. In: Proceedings of the Second International Conference on Learning Analytics and Knowledge, ACM, 2012, pp. 267270. DOI: 10.1145/2330601.2330666. (In Eng.).
21. Os’kin A. F., Os’kin D. A. Primenenie intellektual’nogo analiza obrazovatel’nyh dannyh dlja prognozirovanija uspesh-nosti uchebnoj dejatel’nosti [Using Educational Data Mining to Predict the Success of Educational Activities]. Journal of Polotsk State University, Series «Fundamental science», 2016, pp. 8-12. (In Russ.).
22. Panchenko V. M. Jeksperimental’nyj programmnyj kompleks dlja modelirovanija i interpretacii processov analiza obrazovatel’nyh dannyh [Experimental Software Package for Modeling and Interpretation of Processes of Educational Data Analysis]. Modern Information Technologies and IT Education, 2017, vol. 13, no 4, pp. 207-215. (In Russ.).
23. Clow D. The learning analytics cycle: closing the loop effectively. In: Proceedings of the Second International Conference on Learning Analytics and Knowledge, 2012, pp. 134-138. DOI: 10.1145/2330601.2330636. (In Eng.).
24. Fritz J. Classroom Walls that Talk: Using Online Course Activity Data of Successful Students to Raise SelfAwareness of Underperforming Peers. The Internet and Higher Education, 2011, vol. 14, no 2, pp. 89-97. DOI: 10.1016/j.iheduc.2010.07.007. (In Eng.).
25. Bakhshinategh B., Zaiane O. R., El Atia S., Ipperciel D. Educational Data Mining Applications and Tasks: A Survey of the Last 10 years. Education and Information Technologies, 2018, vol. 23, no 1, pp. 537-553. DOI: 10.1007/s10639-017-9616-z. (In Eng.).
26. Bienkowski M., Feng M., Means B. Enhancing Teaching and Learning through Educational Data Mining and Learning Analytics: An Issue Brief. Washington, D. C., U. S. Department of Education, 2012. 64 p. (In Eng.).
27. Astahova L. V., Zavadskij A. O. Osobennosti organiza-cii zashhity personal’nyh dannyh v obrazovatel’noj organiza-cii [Organization of Personal Data Protection in Educational Organizations]. Journal of the Ural Federal District. Security in the Information Sphere, 2013, no 3(9), pp. 4-10. (In Russ.).
28. Gavrilova I. V. Organizacija zashhity personal’nyh dannyh v obrazovatel’nyh uchrezhdenijah [Organization of Personal Data Protection in Educational Institutions]. New Information Technologies in Education, 2014, pp. 509-513. (In Russ.).
29. Tolmachev V. V. Problemy zashhity personal’nyh dannyh v obrazovatel’nyh organizacijah [Problems of Personal Data Protection in Educational Organizations]. Yearbook of the Academy of Public Administration, 2015, vol. 1, pp. 126-141. (In Russ.).
30. Hlystova D. A., Popov K. G. K voprosu o modelirovanii ugroz personal’nym dannym pol’zovatelej v sistemah distan-cionnogo obuchenija obrazovatel’nyh organizacij [Modeling Threats to Users ‘ Personal Data in Distance Learning Systems of Educational Organizations]. International Student Scientific Bulletin, 2016, no 3-1, pp. 96-97. (In Russ.).
31. Abrukov V. S., Petrova M. V., Anufrieva D. A. Metody intellektual’nogo analiza dannyh pri modelirovanii obrazovatel’nogo processa v vuze [Methods of Data Mining in Modeling of the Education Process at a University]. In: Voprosy povysheniya effektivnosti professionalno-go obrazovania v sovremennykh usloviyakh [Issues of mproving the Effectiveness of Professional Education in Modern Conditions]. Proceedings of the 21st and 22nd All-Russian Conferences, Slavyansk-na-Kubani, 2014, pp. 86-90. (In Russ.).
32. Stain D. A., Chasovskih V. P. Ishodnye dannye mode-li obrazovatel’nogo processa vuza v srede sovremennyh web-tehnologij [Initial Data of the Model of the Educational Process of the University in the Environment of Modern Web Technologies]. Sovremennye problemy nauki i obrazovania, 2015, no 1, p. 164. (In Russ.).
33. Anisimov A. V. Postroenie sistemy distancionnogo ob-razovanija na osnove tehnologij dostupa k obrazovatel’nym udalennym bazam dannyh [Building a Distance Education System Based on Access Technologies to Educational Remote Databases]. Information Systems and Technologies in Modeling and Management, 2016, pp. 164-168. (In Russ.).
34. Gorutko E. N. Primenenie intellektual’nogo anal-iza dannyh v zadache ocenki kachestva jelektronnyh obrazovatel’nyh resursov [Application of Data Mining to Address the Problem of Evaluating the Quality of Electronic Educational Resources]. Prospects for the Development of Information Technologies, 2016, no 30, pp. 103-108. (In Russ.).
35. Verjaev A. A., Tatarnikova G. V. Educational Data Mining i Learning Analytics-napravlenija razviti-ja obrazovatel’noj kvalitologii [Educational Data Mining and Learning Analytics-Directions of Development of Educational Qualitology]. Teacher of the 21st Century, 2016, vol. 1, no 2, pp. 151-160. (In Russ.).
36. Bystrova T. Ju., Larionova V. A., Sinicyn E. V., Tolmachev A. V. Uchebnaja analitika MOOK kak instrument prognozirovanija uspeshnosti obuchajushhihsja [Learning Analytics in Massive Open Online Courses as a Tool for Predicting Learner Performance]. Voprosy obrazovania, 2018, no 4, pp. 139-166. DOI: 10.17323/1814-9545-2018-4-139-166. (In Russ.).
37. Kotova E. E., Pisarev A. C. Zadacha klassifikacii uchashhihsja s ispol’zovaniem metodov intellektual’nogo analiza dannyh [The Problem of Classifying Students by Using Data Mining Methods]. Journal of ETU ‘LETI’, 2019, no 4, pp. 32-43. (In Russ.).
38. Howell J. A. et al. Are We on our Way to Becoming a «Helicopter University»? Academics’ Views on Learning Analytics, Technology, Knowledge and Learning, 2018, vol. 23, no 1, pp. 1-20. DOI: 10.1007/s10758-017-9329-9. (In Eng.).
39. Ferguson R. et al. Research Evidence on the Use of Learning Analytics: Implications for Education Policy (2016). Available at: http://oro.open.ac.uk/48173/1/Analytics%20re-search%20evidence.pdf (accessed 11.06.2020). (In Eng.).
40. NTU Student Dashboard, Learning Analytics Network, University of East London (2015). Available at: http://analy-tics.jiscinvolve.org/wp/files/2015/02/Jisc-LA-Network-Mike-Day.pdf (accessed 11.06.2020). (In Eng.).
41. Denley T. Degree Compass: A Course Recommendation System. EDUCAUSE Review Online, 2013. Available at: https://er.educause.edu/articles/2013/9/de-gree-compass-a-course-recommendation-system (accessed 11.06.2020). (In Eng.).
42. Newman A., Stokes P., Bryant G. Learning to Adapt: A Case for Accelerating Adaptive Learning in Higher Education. Boston, MA, Education Growth Advisors, 2013. 18 p. (In Eng.).
43. Leece R., Hale R. Student Engagement and Retention through e-Motional Intelligence. UNE: Australia, 2009. Available at: http://www.educationalpolicy.org/events/R09/PDF/Leece_E-Motion.pdf (accessed 8.09.2020). (In Eng.)
44. Davis D. Altis Consulting: HE Information Management Specialists. Presentation to the UK Learning Analytics Network, Edinburgh (2015). Available at: https://analytics.jiscinvolve.org/wp/files/2015/05/Jisc-LA-Network-Davis.pdf (accessed 11.06.2020). (In Eng.).
45. Leece R., Campbell E. Engaging Students through Social Media. Journal of the Australia and New Zealand Student Services Association, 2011, vol. 38, pp. 10-15. (In Eng.).
46. Nouri J. et al. Efforts in Europe for Data-Driven Improvement of Education-A Review of Learning Analytics Research in Seven Countries. International Journal of Learning Analytics and Artificial Intelligence for Education (iJAI), 2019, vol. 1, no 1, pp. 8-27. DOI: 10.3991/ijai.v1i1.11053. (In Eng.).
47. Terent’ev E., Zaharova U. «Jeto rabotaet!»: perehod na udalennyj rezhim raboty i distancionnoe obuchenie v ocen-kah prepodavatelej rossijskih universitetov [«This Works!»: Switching to Remote Mode and Distance Learning in the Assessments of Russian University Instructors]. In: Shtorm pervyh nedel ’: kak vysshee obrazovanie shagnulo v real ’nost ’ pandemii [First Weeks’ Storm: How Higher EducationEntered into Reality of the Pandemic], Moscow, NRU HSE, 2020, pp. 67-79. (In Russ.).
48. Ajmaletdinov T. A. et al. Cifrovaja gramotnost’ rossijskih pedagogov. Gotovnost’ k ispol’zovaniju cifrovyh tehnologij v uchebnom processe [Digital Literacy of Russian Teachers. Readiness to Use Digital Technologies in the Education Process]. Moscow, NAFI Publishing house, 2019, vol. 84, pp. 43-44. (In Russ.).
49. Buckingham Shum S. J., McKay T. A. Architecting for Learning Analytics: Innovating for Sustainable Impact. EDUCAUSE Review Online, 2018. Available at: https://er.educause.edu/articles/2018/3/architecting-for-learn-ing-analytics-innovating-for-sustainable-impact (accessed 11.06.2020). (In Eng.).
50. Jones K. M. L. Learning Analytics and Higher Education: a Proposed Model for Establishing Informed Consent Mechanisms to Promote Student Privacy and Autonomy. International Journal of Educational Technology in Higher Education, 2019, vol. 16, no 1, pp. 16-24. DOI: 10.1186/s41239-019-0155-0. (In Eng.).
51. Burova N. V. Prozrachnost’ i otkrytost’ informa-cionnyh sistem i dannyh obrazovatel’nyh uchrezhdenij dl-ja innovacionnogo razvitija sistemy vysshego obrazovani-ja [Transparency and Openness of Information Systems and Data of Educational Institutions for Innovative Development of the Higher Education System]. In: Povysheniye otkry-tosti otechestvennoy statistiki [Increasing the Openness of National Statistics]. Proceedings of the International Conference Dedicated to the Professional Holiday - the Day of Statistician, 2016, pp. 26-31. (In Russ.).
52. Slade S., Tait A. Global Guidelines: Ethics in Learning Analytics (2019). Available at: https://static1.squarespace.com/static/5b99664675f9eea7a3ecee82/t/5ca37c2a24a694a94e0e515c/1554218087775/Global+guidelines+for+Ethics+in+Learning+Analytics+Web+ready+March+2019.pdf (accessed 11.06.2020). (In Eng.).
53. Fishman B. E. O subjektnosti studenta vuza v ob-razovatelnoi deyatelnosti [On HEI Student Agency within Learning Activity]. Higher Education in Russia, 2019, no 5, pp. 145-154. DOI: 10.31992/0869-3617-2019-28-5-145-154. (In Russ.).
54. Meyer J. W., Rowan B. The Structure of Educational Organizations, Schools and Society: A Sociological Approach to Education. Pine Forge Press, 2008, pp. 217-225. (In Eng.).
55. Abramov R. N., Gruzdev I. A., Terentev E. A., Zakharova U. S., Grigoryeva A. V. Universitetskie prepoda-vateli i cifrovizacija obrazovanija: nakanune distancionnogo fors-mazhora [University Professors and the Digitalization of Education: on the Threshold of Force Majeure Transition to Studying Remotely]. University Management: Practice and Analysis, 2020, vol. 24, no 2, pp. 59-74. DOI: 10.15826/umpa.2020.02.014. (In Russ.).
56. Majer-Shenberger V., Kuk’er K. Bol’shie dannye. Revoljucija, kotoraja izmenit to, kak my zhivem, rabotaem i myslim [Big Data. A Revolution that Will Change the Way We Live, Work and Think]. Moscow, Mann, Ivanov and Ferber, 2014. 240 p. (In Russ.).
57. Feshchenko A., Goiko V., Mozhaeva G., Shilyaev K., Stepanenko A. Analysis of User Profiles in Social Networks to Search for Promising Entrants. In: INTED2017 Proceedings, 2017, pp. 5188-5194. DOI: 10.21125/inted.2017.1203. (In Eng.)
Review
For citations:
Vilkova K.A., Zakharova U.S. Learning Analytics in Conventional Education: its Role and Outcomes. University Management: Practice and Analysis. 2020;24(3):59-76. (In Russ.) https://doi.org/10.15826/umpa.2020.03.026