The Survey of HEIs Performance as a Data Source on Higher Education in Russia
https://doi.org/10.15826/umpa.2020.02.018
Abstract
Annual Survey of Performance of Higher Education Institutions, conducted in Russiasince 2012, is the main source of open-access information on Russian universities. The discussion on the indicators of the Survey mainly focuses on their applicability for assessing higher education institutions (HEIs). The Survey, however, is not observed as a possible source of data for researchers in higher education. To remedy this deficiency, this paper evaluates the Survey data in terms of their quality and applicability for statistical analysis. The quality of the data is measured in four dimensions: accuracy, timeliness, completeness, and consistency. The technical convenience of the data is evaluated through the analysis of the variables distribution. The conclusion contains recommendations for researchers, who plan to use the Survey data for studying Russian higher education.
About the Authors
A. O. TsivinskayaRussian Federation
Angelika O. Tsivinskaya – Junior Researcher at the Center for Institutional Analysis of Science and Education
6/1a Gagarinskaya Str., Saint Petersburg, 191187
K. S. Guba
Russian Federation
Katerina S. Guba – PhD (Sociology), Director of the Center for Institutional Analysis of Science and Education
6/1a Gagarinskaya Str., Saint Petersburg, 191187
References
1. Guba K., Zavadskaya M. Luchshe byt’ neeffektivnym, chem negosudarstvennym: kak Rosobrnadzor nakazyvaet vuzy [Better Ineffective than Private: How Universities are Penalized by Rosobrnadzor], Saint Petersburg, The Institute for the Rule of Law, European University, 2017, 12 p. (In Russ.).
2. Abankina I., Aleskerov F., Belousova V., Gokhberg L., Zinkovsky K., Kiselgof S., Shvydun S. Tipologiya i analiz nauchno-obrazovatel’noi rezul’tativnosti rossiiskikh vuzov [Typology and Analysis of Russian Universities’ Performance in Education and Science Perspectives]. Foresight-Russia, 2013, vol. 7, no. 3, pp. 48–63. DOI: 10.17323/1995-459x.2013.3.48.63. (In Russ.).
3. Kuzminov J., Semenov D., Froumin I. Struktura vuzovskoi seti: ot sovetskogo k rossiiskomu «master-planu» [University Network Structure: from the Soviet to the Russian «Master Plan»]. Voprosy obrazovaniya, 2013, no. 4, pp. 8–69. DOI: 10.17323/1814-9545-2013-4-8-69. (In Russ.).
4. Prokhorov S. G., Svirina A. A. Monitoring effektivnosti vuzov i perspektivy malykh gorodov RF [Efficiency of University Monitoring and Russian Small Cities Perspectives]. Vysshee obrazovanie v Rossii, 2014, no. 11, pp. 121–125. (In Russ.).
5. Poldin O., Matveeva N., Sterligov I., Yudkevich Publikatsionnaya aktivnost’ vuzov: effekt proekta «5– 100» [Publication Activities of Russian Universities: The Effects of Project 5-100]. Voprosy obrazovaniya, 2017, no. 2, pp. 10–35. DOI: 10.17323/1814-9545-2017-2-10-35. (In Russ.).
6. Sokolov M. Mif ob universitetskoi strategii. Ekonomicheskie nishi i organizatsionnye kar’ery rossiiskikh vuzov [The Myth of University Strategy. Market Niches and Organizational Careers of Russian Universities]. Voprosy obrazovaniya, 2017, no. 2, pp. 36–73. DOI: 10.17323/1814-9545-2017-2-36-73. (In Russ.).
7. Vkusov A. V. Problemy otsenki effektivnosti deyatel’nosti universitetov [Problems of Assessing the Effectiveness of universities]. Sotsiologicheskie issledovaniya, 2018, no. 1, pp. 140–145. DOI: 10.7868/S0132162518010154. (In Russ.).
8. Vinokurov M. A. Monitoring effektivnosti rossiiskikh vuzov: sovershenstvovanie metodologii [Monitoring the Effectiveness of Russian Universities: Enhancing the Methodology]. Izvestiya Irkutskoi gosudarstvennoi ekonomicheskoi akademii, 2013, no. 6 (92), pp. 5–11. (In Russ.).
9. Levashov E. N. Kriterii otsenki effektivnosti deyatel’nosti vuzov v Rossii [Сriteria for Evaluating the Effectiveness of Universities in Russia]. Simvol nauki, 2016, no. 2–2 (14), pp. 170–173. (In Russ.).
10. Connelly R., Playford C. J., Gayle V., Dibben C. The Role of Administrative Data in the Big Data Revolution in Social Science Research. Social Science Research, 2016, vol. 59, pp. 1–12. DOI: 10.1016/j.ssresearch.2016.04.015. (In Eng.).
11. Hand D. J. Statistical Challenges of Administrative and Transaction Data. Journal of the Royal Statistical Society: Series A (Statistics in Society), 2018, no. 181 (3), pp. 555–605. DOI: 10.1111/rssa.12315. (In Eng.).
12. Ballou D. P., Pazer H. L. Modeling Data and Process Quality in Multi-Input, Multi-Output Information Systems. Management Science, 1985, no. 31 (2), pp. 150–162. DOI: 10.1287/mnsc.44.4.462. (In Eng.).
13. Fox C., Levitin A., Redman T. The Notion of Data and Its Quality Dimensions. Information Processing & Management, 1994, no. 30 (1), pp. 9–19. DOI: 10.1016/0306-4573 (94) 90020-5. (In Eng.).
14. Tayi G. K., Ballou D. P. Examining Data Quality. Communications of the ACM, 1998, no. 41 (2), pp. 54–57. DOI: 10.1145/269012.269021. (In Eng.).
15. Kitchin R. Big Data, New Epistemologies and Paradigm Shifts. Big Data & Society, 2014, vol. 1, no. 1, pp. 1–12. DOI: 10.1177/2053951714528481. (In Eng.).
16. Zaveri A., Rula A., Maurino A., Pietrobon R., Lehmann J., Auer S. Quality Assessment for Linked Data: A Survey. Semantic Web, 2016, no. 7 (1), pp. 63–93. DOI: 10.3233/sw-150175. (In Eng.).
17. Herzog T. N., Scheuren F. J., Winkler W. E. Data Quality and Record Linkage Techniques. New York : Springer Science & Business Media, 2007. 234 p. (In Eng.)
18. Bonaccorsi A., Daraio C., Lepori B., Slipersaeter S. Indicators on Individual Higher Education Institutions: Addressing Data Problems and Comparability Issues. Research Evaluation, 2007, no. 16, pp. 66–78. DOI: 10.3152/095820207X218141. (In Eng.).
19. Lepori B., Jeroen Huisman J., Seeber M. Convergence and Differentiation Processes in Swiss Higher Education: an Empirical Analysis. Studies in Higher Education, 2014, vol. 39, no. 2, pp. 197–218. DOI: 10.1080/03075079.2011.647765. (In Eng.).
20. Mateos-González J. L., Boliver V. Performance-Based University Funding and the Drive Towards ‘Institutional Meritocracy’ in Italy. British Journal of Sociology of Education, 2018, vol. 40, no. 2, pp. 1–14. DOI: 10.1080/01425692.2018.1497947. (In Eng.).
21. Seeber M., Cattaneo M., Meoli M., Malighetti P. Self-Citations as Strategic Response to the Use of Metrics for Career Decisions. Research Policy, 2019, no. 48 (2), pp. 478–491. DOI: 10.1016/j.respol.2017.12.004. (In Eng.).
22. Piro F. N., Aksnes D. W., Rørstad K. A Macro Analysis of Productivity Differences across Fields: Challenges in the Measurement of Scientific Publishing. Journal of the American Society for Information Science and Technology, 2013, vol. 64, no. 2, pp. 307–320. DOI: 10.1002/asi.22746. (In Eng.).
Review
For citations:
Tsivinskaya A.O., Guba K.S. The Survey of HEIs Performance as a Data Source on Higher Education in Russia. University Management: Practice and Analysis. 2020;24(2):121-130. (In Russ.) https://doi.org/10.15826/umpa.2020.02.018